Learning Models for English Speech Recognition
نویسندگان
چکیده
This paper reports on an experiment to determine the optimal parameters for a speech recogniser that is part of a computer aided instruction system for assisting learners of English as a Second Language. The recogniser uses Hidden Markov Model (HMM) technology. To find the best choice of parameters for the recogniser, an exhaustive experiment with 2370 combinations of parameters was performed on a data set of 1119 different English utterances produced by 6 female adults. A server-client computer network was used to carry out the experiment. The experimental results give a clear preference for certain sets of parameters. An analysis of the results also identified some of the causes of errors and the paper proposes two approaches to reduce these errors.
منابع مشابه
Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملStructured-based Curriculum Learning for End-to-end English-Japanese Speech Translation
Sequence-to-sequence attentional-based neural network architectures have been shown to provide a powerful model for machine translation and speech recognition. Recently, several works have attempted to extend the models for end-to-end speech translation task. However, the usefulness of these models were only investigated on language pairs with similar syntax and word order (e.g., English-French...
متن کاملSpeaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
Speaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
Using deep neural networks to improve proficiency assessment for children English language learners
We investigated the use of context-dependent deep neural network hidden Markov models, or CD-DNN-HMMs, to improve speech recognition performance for a better assessment of children English language learners (ELLs). The ELL data used in the present study was obtained from a large language assessment project administered in schools in a U.S. state. Our DNN-based speech recognition system, built u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004